
IEMS 5730
Spring 2023

Stream Processing
Apache Storm and Kafka

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Storm&Kafka 2

Acknowledgements
n The slides used in this chapter are adapted from the following

sources:
n Nathan Marz, “Storm – Distributed and Fault-tolerant real-time

computation,” 2011, http://cloud.berkeley.edu/data/storm-berkeley.pdf
n Krishna Gade of Twitter, “storm - Stream Processing @twitter,” June

2013.
n Michael G. Noll of Verisign, “Apache Storm 0.9 basic training,” July, 2014,

http://www.slideshare.net/miguno/apache-storm-09-basic-training-
verisign

n Guido Schmutz of Trivadis, “Apache Storm vs. Spark Streaming – Two
Stream Processing Platforms compared,” DBTA Workshop on Stream
Processing, Berne, Dec 2014.

n Bobby Evans of Yahoo!, “From Gust to Tempest: Scaling Storm,” talk at
Hadoop Summit 2015.

n Sean T. Allen, Matthew Jankowski, Peter Pathirana ,Storm Applied,
Published by Manning, 2015.

n Rahul Jain, “Real time Analytics with Apache Kafka and Spark,” Big Data
Hyderabad Meetup, Oct 2014

n All copyrights belong to the original authors of the materials.

Storm&Kafka 3

Example Use Case: Data Driven Personalization
http://visualize.yahoo.com/core/

http://visualize.yahoo.com/core

Storm&Kafka 4

System Architecture for Data Driven Personalization
based on Offline, Asynchronous (e.g. Daily/Weekly)

Log Processing/ Data Analytics
/

Storm&Kafka 5

@ Async Tier (before 2010)

Storm&Kafka 6

Pros and Cons of
Async Processing via Hadoop

Strength
n Batch processing

n simple programming model
n Massively scalable

n 1000’s node cluster w/
commodity hardware

n High throughout
n Move computation to the

data nodes
n Highly available

n Built-in failover

Weakness
n High Latency

n Minutes or even hours
n Poor support for Interactive

Analysis
n Inability to Rapidly Respond to

Special/ Unexpected Events

Storm&Kafka 7

If a company can react to data more
quickly, it can make more

Storm&Kafka 8

Why Stream Processing ?

Storm&Kafka 9

What is Stream Processing ?
n Infrastructure for continuous (non-stopped, never-ending) data

processing
n Computational model can be as general as MapReduce but

with the ability to produce results under low-latency constraint
n Input Data collected continuously is naturally processed

continuously
n Also known as Event Processing or Complex Event Processing

(CEP)

Storm&Kafka 10

Architectural Pattern #1:
A Standalone Event Stream Processing System:

Kafka –
a Unified, Scalable
Event Logging system supporting
the Message Publishing/
Subscription model

Architectural Patterns
to support

BOTH Real-Time and Batched
Big Data Processing

Storm&Kafka 12

The Two-Pronged Approach
n http://nathanmarz.com/blog/how-to-beat-the-cap-

theorem.html
n The interesting take-away: Fast Real-Time path

with Batch Backup reduces complexity and
improves performance

Source of Truth

Batch Batch Batch Batch Batch Batch

In
pu

t

Async

Real-time Streaming

Deltas

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Storm&Kafka 13

Architectural Pattern #2:
Event Stream Processing as part of the

Lambda Architecture (proposed by Nathan Marz)

http://lambda-architecture.net

Kafka –
a Unified, Scalable
Event Logging system
supporting the Message
Publishing/ Subscription model

Storm&Kafka 14

Summing Bird

n https://github.com/twitter/summingbird
Write the same code (script) and then compile to

be run on Storm as well as one Hadoop.

https://github.com/twitter/summingbird

Storm&Kafka 15

Architectural Pattern #3:
Event Stream Processing as part of the

Kappa Architecture (from LinkedIn)

http://milinda.pathirage.org/kappa-architecture.com/

Kafka
a Unified, Scalable
Event Logging system
supporting the message
Publishing/ Subscription model

Stream Processing with
Apache Storm

Storm&Kafka 17

Agenda
n Motivation for Stream Processing
n Apache Storm

n Stream-based Programming Models and Examples
n Different Flavors of Processing Guarantees
n Additional Computational Models with Storm

n Distributed Remote Procedure Call (DRPC)
n Transactional Processing with Trident (over Storm)

n Storm System Architecture
n Operational Guidelines for Storm
n Adoption Statistics and Real-time Use Cases
n Future Extensions (Researchie)

Storm&Kafka 18

Traditional Workflow under the
Queues-Workers Model for Event Processing

Storm&Kafka 19

A Simplified Example

Storm&Kafka 20

A Simplified Example

Storm&Kafka 21

A Simplified Example

Storm&Kafka 22

A Simplified Example

Storm&Kafka 23

The procedure to scale-up the system

Storm&Kafka 24

Problems of Traditional Workflow model
n Scaling is Painful as it involves Queue-

partitioning and deployment of additional
Workers (processes/nodes)

n Operational overhead due to Worker failures
and Queue-Backups

n Coding is Tedious
n No guarantees on whether incoming Data is

being processed

Storm&Kafka 25

A Solution: Apache Storm
n Focus on the support of Real-Time Streaming jobs
n To simplify dealing with queues (for tasks) and many workers (for load

balancing/parallelization)
n Higher level abstraction than message passing

n No intermediate message brokers!
n Support Guaranteed data processing (at least once) ; default: at most once
n Horizontal scalability ;
n Fault-tolerance
n Complementary to Hadoop:

n The “Hadoop” of real time streaming jobs
n The “Summingbird” system by Twitter can actually compile a single programming script into

a Storm and Hadoop version separately
n Built by Nathan Marz et al at Backtype, acquired and hardened by Twitter in 2011 ;

Open-sourced under Apache license since 2013
n Written in Clojure (a dialect of LISP): a Functional Programming Language which

generates bytecodes for JVM ;
n Let users (programmers) program in Java and Clojure

n At Twitter, Storm had been decommissioned as of summer 2015. Storm has been
replaced by Heron
n Heron uses the SAME programming abstraction and is 100% API-compatible with Storm
n Under Apache incubation (as of Feb 2019) https://github.com/apache/incubator-heron

Storm&Kafka 26

Key Concepts in Storm
n Stream

n An Unbounded sequence of
Tuples

n Core Abstraction in Storm
n Defined with a Schema that

names the fields in the Tuple
n Value must be serializable
n Every Stream has an ID

n Topologies
n A Directed Acyclic Graph (DAG)

where each node is either a
Data source (Spout) or a
Processing node (Bolt)

n An Edge indicates which Bolt
subscribes to which Stream

Storm&Kafka 27

Key Concepts in Storm (cont’d)
n Spout

n Source of data stream
(tuples), e.g.

n Read from the Twitter streaming
API (tuples = tweets)

n Read from a http server log
(tuples = http requests)

n Read from a Kafka queue
(tuples = events)

n Bolt
n Processes 1+ input stream(s)

and produces 1+ new
stream(s)

n e.g. Calculate, Functions,
Filters, Aggregation, Joins, talk
to database

n Complex operations may
require more than 1 Bolt

n A sample Storm Topology
n Compiled to be executed on

many machines similar to a
MapReduce job in Hadoop

Storm&Kafka 28

Storm Tasks

n Each Spout or Bolt is executed as one or more Tasks
(instances) across the cluster

Storm&Kafka 29

Key Concepts in Storm (cont’d)

n Worker (JVM) Process
n Executes subset of a Topology ;
n May run 1 or more threads (Executors) for one or more components
n One Thread per Executor

n Task
n The actual data processing instance executing by the thread
n It is possible for multiple tasks to share one thread (Why ? to facilitate

dynamic scaling)

Storm&Kafka 30

An Example on deploying a Topology across a Cluster

Storm&Kafka 31

A trivial “Hello, Storm” topology

“emit random
number < 100”

“multiply
by 2”

(148)(74)

Spout Bolt

Storm&Kafka 32

Spout

Bolt

Code

Storm&Kafka 33

Topology config – for running on your local laptop

Code

Storm&Kafka 34

Topology config – for running on a production Storm cluster

Code

Storm&Kafka 35

Creating a spout
n Very often, it suffices to use an existing spout (Kafka spout, Redis

spout, etc).
n But you usually needs to implement your own bolts to realize your

specific computation.

Storm&Kafka 36

Creating a Bolt
n Storm is polyglot – but we focus on Java.
n Two main options for JVM users:

n Implement the IRichBolt or IBasicBolt interfaces
n Extend the BaseRichBolt or BaseBasicBolt abstract classes

n BaseBasicBolt
n Auto-acks the incoming tuple at the end of its execute() method.
n With the right type of Spout (reliable one), “at-least-once” processing

guarantee for each tuple is already supported automatically (and
implicitly).

n These bolts are typically simple functions or filters.
n BaseRichBolt

n Allow one to specify complex tuple-anchoring/ack mechanism explicitly.
n Need to use this type of bolt if one wants “at-most-once”, i.e. no

guarantee in tuple-processing ;
n You must – and are able to – manually ack() an incoming tuple.
n Can be used to delay acking a tuple, e.g. for algorithms that need to

work across multiple incoming tuples.

https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/IRichBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/IBasicBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/base/BaseRichBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/base/BaseBasicBolt.java

Storm&Kafka 37

Extending BaseRichBolt
n Let’s re-use our previous example bolt.

Storm&Kafka 38

Extending BaseRichBolt
n execute() is the heart of the bolt.
n This is where you will focus most of your attention when implementing

your bolt or when trying to understand somebody else’s bolt.

Storm&Kafka 39

Extending BaseRichBolt
n prepare() acts as a “second constructor” for the bolt’s class.
n Because of Storm’s distributed execution model and serialization,

prepare() is often needed to fully initialize the bolt on the target JVM.

Storm&Kafka 40

Extending BaseRichBolt
n declareOutputFields() tells downstream bolts about this bolt’s

output format. What you declare must match what you actually emit().
n You will use this information in downstream bolts to “extract” the data

from the emitted tuples.
n If your bolt only performs side effects (e.g. talk to a DB) but does not emit

an actual tuple, override this method with an empty {} method.

Storm&Kafka 41

Common spout/bolt gotchas
n NotSerializableException at run-time of your topology

n Typically you will run into this because your bolt has fields (instance or
class members) that are not serializable. This recursively applies to each
field.

n The root cause is Storm’s distributed execution model and serialization:
Storm code will be shipped – first serialized and then deserialized – to a
different machine/JVM, and then executed. (see docs for details)

n How to fix?
n Solution 1: Make the culprit class serializable, if possible.
n Solution 2: Register a custom Kryo serializer for the class.
n Solution 3a (Java): Make the field transient. If needed, initialize it in
prepare().

n Solution 3b (Scala): Make the field @transient lazy val (Scala). If needed,
turn it into a var and initialize it in in prepare().

n For example, the var/prepare() approach may be needed if you use the factory
pattern to create a specific type of a collaborator within a bolt. Factories come in
handy to make the code testable. See AvroKafkaSinkBolt in kafka-storm-starter for
such a case.

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/AvroKafkaSinkBolt.scala

Storm&Kafka 42

Common spout/bolt gotchas
n Tick tuples are configured per-component, i.e. per bolt

n Idiomatic approach to trigger periodic activities in your bolts: “Every 10s do XYZ.”
n Don't configure them per-topology as this will throw a RuntimeException.

n Tick tuples are not 100% guaranteed to arrive in time
n They are sent to a bolt just like any other tuples, and will enter the same queues

and buffers. Congestion, for example, may cause tick tuples to arrive too late.
n Across different bolts, tick tuples are not guaranteed to arrive at the same time,

even if the bolts are configured to use the same tick tuple frequency.
n Currently, tick tuples for the same bolt will arrive at the same time at the bolt's

various task instances. However, this property is not guaranteed for the future.

http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

Storm&Kafka 43

Common spout/bolt gotchas
n When using tick tuples, forgetting to handle them "in a special way"

n Trying to run your normal business logic on tick tuples – e.g. extracting a certain
data field – will usually only work for normal tuples but fail for a tick tuple.

n When using tick tuples, forgetting to ack() them
n Tick tuples must be acked like any other tuple.

http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

Storm&Kafka 44

Common spout/bolt gotchas
n Outputcollector#emit() can only be called from the "original"

thread that runs a bolt
n You can start additional threads in your bolt, but only the bolt's own thread may call

emit() on the collector to write output tuples. If you try to emit tuples from any of
the other threads, Storm will throw a NullPointerException.

n If you need the additional-threads pattern, use e.g. a thread-safe queue to communicate
between the threads and to collect [pun intended] the output tuples across threads.

n This limitation is only relevant for output tuples, i.e. output that you want to send
within the Storm framework to downstream consumer bolts.

n If you want to write data to (say) Kafka instead – think of this as a side effect of
your bolt – then you don't need the emit() anyways and can thus write the side-
effect output in any way you want, and from any thread.

Storm&Kafka 45

Creating a topology
n When creating a topology you’re essentially defining the

DAG – that is, which spouts and bolts to use, and how
they interconnect.
n TopologyBuilder#setSpout() and TopologyBuilder#setBolt()
n Groupings between spouts and bolts, e.g. shuffleGrouping()

Storm&Kafka 46

Creating a topology
n You must specify the initial parallelism of the topology.

n Crucial for Performance &Scaling but no rule of thumb.
n You must understand concepts such as workers/executors/tasks.

n Only some aspects of parallelism can be changed later,
i.e. at run-time.
n You can change the #executors (threads).
n You cannot change #tasks, which remains static during the topology’s

lifetime.

Storm&Kafka 47

Creating/ Submitting a topology
n You submit a topology either to a “local” cluster or to a real cluster.

n LocalCluster#submitTopology
n StormSubmitter#submitTopology() and

#submitTopologyWithProgressBar()
n In your code you may want to use both approaches, e.g. to facilitate local testing.

n Notes
n A StormTopology is a static, serializable Thrift data structure. It contains

instructions that tell Storm how to deploy and run the topology in a cluster.
n The StormTopology object will be serialized, including all the components

in the topology's DAG.
n Only when the topology is deployed (and serialized in the process) and

initialized (i.e. prepare() and other life cycle methods are called on
components such as bolts) does it perform any actual message
processing.

Storm&Kafka 48

Running a topology
n To run a topology you must first package your code into a “fat jar”.

n You must include all your code’s dependencies but:
n Exclude the Storm dependency itself, as the Storm cluster will provide

this.
n Sbt: "org.apache.storm" % "storm-core" % "0.9.2-incubating" % "provided"
n Maven: <scope>provided</scope>
n Gradle with gradle-fatjar-plugin: compile '...', { ext { fatJarExclude = true }

}

n Note: You may need to tweak your build script so that your local tests do include
the Storm dependency. See e.g. assembly.sbt in kafka-storm-starter for an
example.

n A topology is run via the storm jar command.

n Will connects to Nimbus, upload your jar, and run the topology.
n Use any machine that can run "storm jar" and talk to Nimbus' Thrift port.
n You can pass additional JVM options via $STORM_JAR_JVM_OPTS.

$ storm jar all-my-code.jar com.miguno.MyTopology arg1 arg2

https://github.com/musketyr/gradle-fatjar-plugin
https://github.com/miguno/kafka-storm-starter/blob/develop/assembly.sbt
http://storm.incubator.apache.org/documentation/Command-line-client.html

Storm&Kafka 49

Alright, my topology runs – now what?
n The topology will run forever or until you kill it.
n Check the status of your topology

n Storm UI (default: 8080/tcp)
n Storm CLI, e.g. storm [list | kill | rebalance | deactivate |

...]
n Storm REST API

n FYI:
n Storm will guarantee that no data (tuple) is lost, even if machines go

down and messages are dropped (as long as you don’t disable this
feature).

n But if you store states using your own variables in the bolts/ spouts,
the state information would be lost when the bolts/spouts die/
crashes

n One (new) way to overcome this is to use “Stateful Bolts with
Automatic Checkpointing” by extending from the BaseStatefulBolt
class available from the recently released Storm Ver1.0.

n Storm will automatically restart failed tasks, and even re-assign tasks
to different machines if e.g. a machine dies.

http://storm.incubator.apache.org/documentation/Command-line-client.html

Storm&Kafka 50

Another Example:
Word Counting with Storm

Storm&Kafka 51

How/ Where to route a tuple?

n e.g. For the previous Superbowl Tweet Analysis Example:

When a tuple is emitted, which task should it be routed to ?
Ans: It is User-Programmable

Storm&Kafka 52

Using a NoSQL database for storing the results
(Keeping state with the counter-type columns)

Here, Cassandra serves as a persistent datastore so that the accumulated
counter statistics can survive the crashing of some of the topology’s components,
e.g. one or more of the Hashtag Counter bolt(s)

Storm&Kafka 53

WordCount in Storm (part of the code)

TopologyBuilder builder = new TopologyBiulder();
builder.setSpout(“spout”, new KestrelSpout(“kestrel.twitter.com”,

22133, “sentence_queue”, new StringScheme()),5);
builder.setBolt(“split”, new SplitSentence(), 8).shuffleGrouping(“spout”);
builder.setBolt(“count”, new WordCount(), 12)

.fieldGrouping(“split”, new Fields(“word”));

//===
public static class SplitSentence extends ShellBolt implements IRichBolt {
//Code to split a sentence

}

public static class WordCount implements IBasicBolt{
//Code to count words, have to override the execute function
public void execute(Tuple tuple, BasicOutputCollector collector){
//…
}

}
//==
StormSubmitter.submitTopology(“word-count”, builder.createTopology());

Parallelism Degree
=(Number of threads for a

Spout or Bolt) ;
Default = 1 task per thread ;

Can be overridden by
setTaskNum()

Storm&Kafka 54

Actual Code to Create the Topology
of the Example

Storm&Kafka 55

Storm supports 3 different flavors of
Message/Tuple Processing Guarantee

1. No Guarantee at all (like S4 of Yahoo)

2. At Least Once -- i.e. it is possible for some tuple(s) to be
repeatedly processed by the topology more than once

3. Exactly Once (like Transaction)
• but this has feature has been deprecated
• Now, one should use Trident (is built one the top of

Storm) to support Transaction-oriented processing

Storm&Kafka 56

At Least Once

n Tuple Tree
n A spout tuple is not fully

processed until all tuples in the
tree have been completed

n If the tuple tree is not completed
within a specified timeout, the
spout tuple is replayed

n Uses acker tasks to keep track of
tuple progress

n Reliability API for the user:

“Anchoring”
creates a new
edge in the tuple
tree

Marks a single
node in the tree as
complete

Storm&Kafka 57

At Least Once

n What happens if there is a failure?
n You can double process events.
n This is not so critical if you have something like Hadoop

to back you up and correct the issue later.
n Or if you are looking at statistical trends and replay does

not happen that often.
n This requires you to have a spout that supports

replay. Not all messaging infrastructure does.

Storm&Kafka 58

At Least Once
SPOUT SPLIT COUNT

[“the cow
jumped over
the moon”]

Acker

[“the”]

[“cow”]

[“jumped”
]

[“over”]

[“the”]

[“moon”]

[“the”, 2]

[“cow”, 1]

[“jumped”,
1]

[“over”, 1]

[“moon”, 1]

Storm&Kafka 59

At Least Once
SPOUT SPLIT COUNT

[“the cow
jumped over
the moon”]

Acker

[“the”]

[“cow”]

[“jumped”
]

[“over”]

[“the”]

[“moon”]

[“the”, 2]

[“cow”, 1]

[“over”, 1]

[“moon”, 1]

[“the”, 4]

[“cow”, 2]

[“jumped”,
1]

[“over”, 2]

[“moon”,
2]

Storm&Kafka 60

Exactly Once - Transactional Topologies
(Deprecated in Storm ; Use Trident instead)

n Transactional Topologies provide a strong
ordering of processing.

n A small batch of tuples are processed at a time.
n Each batch completely succeeds or completely

fails.
n Each batch is “committed” in order.
n Partial processing is pipelined
n Requires the spout to be able to replay a batch.

Storm&Kafka 61

Additional Computation models with Storm

n Storm DRPC
n Parallelize the computation of really intense functions on the fly.
n Input is a stream of function arguments, and output is a stream of the

results for each of those function calls.

n Storm Trident
n High-level abstraction on top of Storm, which intermixes high

throughput and stateful stream processing with low latency
distributed querying.

n Joins, aggregations, grouping, functions, filters.
n Adds primitives for doing stateful, incremental processing on top

of any database or persistence store.
n Has consistent, exactly-once semantics.
n Processes a stream as small batches of messages

n (cf. Spark Streaming)

http://storm.incubator.apache.org/documentation/Distributed-RPC.html
https://storm.incubator.apache.org/documentation/Trident-tutorial.html

Storm&Kafka 62

Distributed Remote Procedure Call (DRPC)

Storm&Kafka 63

DRPC

n Distributed Remote Procedure Call
n Turn an RPC call into a tuple sent from a spout
n Take a result from that and send it back to the

user.

Storm&Kafka 64

DRPC
n Distributed Remote Procedure Call
n Turn an RPC call into a tuple sent from a spout
n Take a result from that and send it back to the

user.

Storm&Kafka 65

An Example using DRPC
n Computing “Reach” of a URL on the fly

n “Reach” is the no. of UNIQUE people exposed to a
given URL on Twitter

How to compute “Reach” :

Storm&Kafka 66

A Storm Topology to Compute Reach

Storm&Kafka 67

A Storm Topology to Compute Reach (cont’d)

Storm&Kafka 68

A Storm Topology to Compute Reach (cont’d)

Storm&Kafka 69

A Storm Topology to Compute Reach (cont’d)

Storm&Kafka 70

A Storm Topology to Compute Reach (cont’d)

Storm&Kafka 71

Trident

Storm&Kafka 72

But What About State

n For most cases, state storage in Storm is left up
to you (the programmer).

n If your Bolt goes down after accumulating 3
weeks of aggregated data that you have not
stored any where -- too bad.

Storm&Kafka 73

Enter Trident

n Trident is a high-level abstraction for doing Real-
Time computing on the top of Storm
n Similar to high-level batch processing tools like Pig or

Cascading
n Provides Exactly-Once semantics like

transactional topologies.
n In Trident, state is a first class citizen, but the

exact implementation of state is up to you.
n There are many pre-built connectors to various

NoSQL stores like HBase
n Provides a high level API (similar to cascading

for Hadoop)

Storm&Kafka 74

Trident Example

TridentTopology topology =
new TridentTopology();

TridentState wordCounts =
topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(),

new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new

MemoryMapState.Factory(), new Count(), new
Fields("count"))

.parallelismHint(6);

Aggregates values and
stores them.

Storm&Kafka 75

Trident Example

public class Split extends BaseFunction {

public void execute(TridentTuple tuple,
TridentCollector collector) {

String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

collector.emit(new Values(word));
}

}

}
No Acking Required

Storm&Kafka 76

Storm System Architecture
n Nimbus

n Master node (like the Job Tracker in Hadoop ver1.0)
n Manage Topologies ; Distribute Code ; Assign Tasks ; Monitor Failure

n Supervisor
n Runs on Slave nodes (aka Worker nodes) ; listen to assignment and then

launch & manage Worker (JVM) processes
n Coordinate with Zookeeper for Fault-Tolerance/ Synchronization, etc

n Zookeeper
n Store operational States & Statistics
n Cluster Coordination
n Service Discovery

slave node
(aka worker node)

slave node

Storm&Kafka 77

A Summary on What Storm does
n Distribute Code and Configuration
n Robust Process Management
n Monitors Topologies and Assign Failed Tasks
n Provide Reliability by Tracking Tuple Tree
n Routing and Partitioning of Streams
n Serialization
n Fine-grained Performance Statistics/ Status of

Topologies

Storm&Kafka 78

Comparison of Architecture:
Hadoop v1 (MapReduce) vs. Storm

Hadoop
v1

Storm Functions in Storm

JobTracker Nimbus
(only 1)

§ distributes code around cluster
§ assigns tasks to machines/supervisors
§ failure monitoring
§ is fail-fast and stateless (you can “kill -9” it)

TaskTracker Supervisor
(many)

§ listens for work assigned to its machine
§ starts and stops worker processes as necessary based on

Nimbus
§ is fail-fast and stateless (you can “kill -9” it)
§ shuts down worker processes with “kill -9”, too

MR job Topology § processes messages forever (or until you kill it)
§ a running topology consists of many worker processes spread

across many machines

Storm&Kafka 79

Different ways to run Storm over a Cluster
n Twitter runs multiple instances of Storm over Mesos

n Multiple Topologies can be run on the same host (Shared Pool) or
n Dedicated Set of hosts to run a single topology (Isolated Pool)

n Storm can also be run as an application (framework) over YARN:

Mapping Storm’s architecture to
YARN’s resource management model

Storm&Kafka 80

Storm architecture: ZooKeeper
n Storm requires ZooKeeper

n 0.9.2+ uses ZK 3.4.5
n Storm typically puts less load on ZK than Kafka (but ZK is still a

bottleneck), but caution: often you have many more Storm nodes than
Kafka nodes

n ZooKeeper
n NOT used for message passing, which is done via Netty in 0.9
n Used for coordination purposes, and to store state and statistics

n Register + discover Supervisors, detect failed nodes, …
n Example: To add a new Supervisor node, just start it.

n This allows Storm’s components to be stateless. “kill -9” away!
n Example: Supervisors/Nimbus can be restarted without affecting

running topologies.
n Used for heartbeats

n Workers heartbeat the status of child executor threads to Nimbus via ZK.
n Supervisor processes heartbeat their own status to Nimbus via ZK.

n Store recent task errors (deleted on topology shutdown)

Storm&Kafka 81

Storm architecture: fault tolerance
n What happens when Nimbus dies (master node)?

n If Nimbus is run under process supervision as recommended (e.g. via
supervisord), it will restart like nothing happened.

n While Nimbus is down:
n Existing topologies will continue to run, but you cannot submit new

topologies.
n Running worker processes will not be affected. Also, Supervisors will restart

their (local) workers if needed. However, failed tasks will not be reassigned
to other machines, as this is the responsibility of Nimbus.

n What happens when a Supervisor dies (slave node)?
n If Supervisor run under process supervision as recommended (e.g. via

supervisord), will restart like nothing happened.
n Running worker processes will not be affected.

n What happens when a worker process dies?
n It's parent Supervisor will restart it. If it continuously fails on startup and

is unable to heartbeat to Nimbus, Nimbus will reassign the worker to
another machine.

http://supervisord.org/

Storm&Kafka 82

Storm hardware specs
n ZooKeeper

n Preferably use dedicated machines because ZK is a bottleneck
for Storm

n 1 ZK instance per machine
n Using VMs may work in some situations. Keep in mind other VMs

or processes running on the shared host machine may impact ZK
performance, particularly if they cause I/O load. (source)

n I/O is a bottleneck for ZooKeeper
n Put ZK storage on its own disk device
n SSD’s dramatically improve performance
n Normally, ZK will sync to disk on every write, and that causes two

seeks (1x for the data, 1x for the data log). This may add up
significantly when all the workers are heartbeating to ZK. (source)

n Monitor I/O load on the ZK nodes
n Preferably run ZK ensembles with nodes >= 3 in production

environments so that you can tolerate the failure of 1 ZK server
(incl. e.g. maintenance)

https://www.mail-archive.com/user@storm.incubator.apache.org/msg02551.html
https://www.mail-archive.com/user@storm.incubator.apache.org/msg02551.html

Storm&Kafka 83

Storm hardware specs
n Nimbus aka master node

n Comparatively little load on Nimbus, so a medium-sized machine
suffices

n EC2 example: m1.xlarge @ $0.27/hour
n Check monitoring stats to see if the machine can keep up

Storm&Kafka 84

Storm hardware specs
n Storm Slave nodes (aka Worker nodes)

n Exact specs depend on anticipated usage – e.g. CPU heavy, I/O
heavy, …

n CPU heavy: e.g. machine learning
n CPU light: e.g. rolling windows, pre-aggregation (here: get more RAM)

n CPU cores
n More is usually better – the more you have the more threads you can

support (i.e. parallelism). And Storm potentially uses a lot of threads.
n Memory

n Highly specific to actual use case
n Considerations: #workers (= JVMs) per node? Are you caching and/or

holding in-memory state?
n Network: 1GigE

n Use bonded NICs or 10GigE if needed
n EC2 examples: c1.xlarge @ $0.36/hour, c3.2xlarges @ $0.42/hour

Storm&Kafka 85

Deploying Storm

n Puppet module
n https://github.com/miguno/puppet-storm
n Hiera-compatible, rspec tests, Travis CI setup (e.g. to test

against multiple versions of Puppet and Ruby, Puppet style
checker/lint, etc.)

n RPM packaging script for RHEL 6
n https://github.com/miguno/wirbelsturm-rpm-storm
n Digitally signed by yum@michael-noll.com
n RPM is built on a Wirbelsturm-managed build server

n Consider Wirbelsturm for 1-click off-the-shelf cluster
setups.

https://github.com/miguno/puppet-storm
https://github.com/miguno/wirbelsturm-rpm-storm

Storm&Kafka 86

Deploying Storm
n An example for a Storm slave node

Storm&Kafka 87

Operating Storm
n Typical operations tasks include:

n Monitoring topologies for Performance and Scalability
(P&S) : “Don’t let our pipes blow up!”

n Tackling P&S in Storm is a joint Ops-Dev effort.
n Adding or removing slave nodes, i.e. nodes that run

Supervisors
n Apps management: new topologies, swapping

topologies, …

n See Ops-related references at the end of this part

Storm&Kafka 88

Storm security
n Original design was not created with security in mind.
n Security features are now being added, e.g. from

Yahoo!’s fork.
n State of security in Storm 0.9.x:

n No authentication, no authorization.
n No encryption of data in transit, i.e. between workers.
n No access restrictions on data stored in ZooKeeper.
n Arbitrary user code can be run on nodes if Nimbus’ Thrift port is

not locked down.
n This list goes on.

n Further details plus recommendations on hardening
Storm:
n https://github.com/apache/incubator-

storm/blob/master/SECURITY.md

https://github.com/apache/incubator-storm/blob/master/SECURITY.md

Storm&Kafka 89

Stream Processing Applications at Twitter

Storm&Kafka 90

Use Cases at Twitter
n Discovery of Emerging Topics and Stories
n Online Learning of Tweet Features for Search

result Ranking
n Real-time Analytics for Ads
n Internal Log processing

Storm&Kafka 91

Tweet Scoring Pipeline

Storm&Kafka 92

Storm adoption and use cases

n Twitter: personalization, search, revenue optimization, …
n 200 nodes, 30 topos, 50B msg/day, avg latency <50ms, Jun 2013

n Yahoo: user events, content feeds, and application logs
n 320 nodes (YARN), 130k msg/s, June 2013

n Spotify: recommendation, ads, monitoring, …
n v0.8.0, 22 nodes, 15+ topos, 200k msg/s, Mar 2014

n Alibaba, Cisco, Flickr, PARC, WeatherChannel, …
n Netflix is looking at Storm and Samza, too.

https://github.com/nathanmarz/storm/wiki/Powered-By

http://www.slideshare.net/KrishnaGade2/storm-at-twitter
http://strata.oreilly.com/2013/06/moving-from-batch-to-continuous-computing-at-yahoo.html
http://www.slideshare.net/sinisalyh/storm-at-spotify
http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html
https://github.com/nathanmarz/storm/wiki/Powered-By

Storm&Kafka 93

Topology Growth at Yahoo

Storm&Kafka 94

Cluster Growth at Yahoo

Storm&Kafka 95

But still have a ways to go before comparable
to Yahoo’s own Hadoop deployment

Yahoo wants to get
to a 4,000-node
Storm cluster.

Storm&Kafka 96

Initial Deployment of Storm within Yahoo !
n Mid 2011:

§ Storm is released as open source
n Early 2012:

§ Yahoo evaluation begins
§ https://github.com/yahoo/storm-perf-test

n Mid 2012:
§ Purpose built clusters 10+ nodes

n Early 2013:
§ 60-node cluster, largest topology 40 workers, 100 executors
§ ZooKeeper config -Djute.maxbuffer=4194304

n May 2013:
§ Netty messaging layer
§ http://yahooeng.tumblr.com/post/64758709722/making-storm-fly-with-

netty
n Oct 2013:

§ ZooKeeper heartbeat timeout checks

https://github.com/yahoo/storm-perf-test
http://yahooeng.tumblr.com/post/64758709722/making-storm-fly-with-netty

Storm&Kafka 97

More recent developments of Apache Storm

n Late 2013:
§ Storm enters Apache Incubator

n Early 2014 in Yahoo! :
§ 250-node cluster, largest topology 400 workers, 3,000 executors

n June 2014:
§ STORM-376 – Compress ZooKeeper data
§ STORM-375 – Check for changes before reading data from ZooKeeper

n Sep 2014:
§ Storm becomes an Apache Top Level Project

n Early 2015:
§ STORM-632 Better grouping for data skew
§ STORM-634 Thrift serialization for ZooKeeper data.
§ Yahoo deployed a 300-node cluster (Tested 400 nodes, 1,200 theoretical

maximum)
§ Largest topology 1,500 workers, 4,000 executors

§ June 2015:
§ Twitter announced the decommissioning of Storm ; replaced by Heron

which adopts the same abstraction and 100% API-compatible with Storm:
§ http://blog.acolyer.org/2015/06/15/twitter-heron-stream-processing-at-scale/
§ Refer to the Heron paper in ACM SIGMOD 2015 for its technical details

http://blog.acolyer.org/2015/06/15/twitter-heron-stream-processing-at-scale/

Storm&Kafka 98

Scalability Bottlenecks of Storm

State Storage (ZooKeeper):
§ Limited to disk write speed (80MB/sec typically)
§ Scheduling

O(num_execs * resched_rate)
§ Supervisor

O(num_supervisors * hb_rate)
§ Topology Metrics (worst case)

O(num_execs * num_comps * num_streams * hb_rate)

On one 240-node Yahoo Storm cluster, ZK writes 16 MB/sec, about
99.2% of that is worker heartbeats

Theoretical Limit:
80 MB/sec / 16 MB/sec * 240 nodes = 1,200 nodes

Storm&Kafka 99

Solution: Pacemaker
(option available since Storm 1.0.0 release, Apr 2016)

An alternative Heartbeat server
Simple Secure In-Memory Store for Worker Heartbeats.

§ Removes Disk Limitation
§ Writes Scale Linearly
(but nimbus still needs to read it all, ideally in 10 sec or less)

240 node cluster’s complete HB state is 48MB, Gigabit is about 125 MB/s

10 s / (48 MB / 125 MB/s) * 240 nodes = 6,250 nodes

Highly-connected
topologies dominate
data volume.

10 GigE helps

Storm&Kafka 100

All raw data serialized, transferred to UI, de-serialized and
aggregated per page load

Our largest topology uses about 400 MB in memory

Aggregate stats for UI/REST in Nimbus
§ 10+ min page load to 7 seconds

DDOS on Nimbus for jar download

Distributed Cache/Blob Store (STORM-411)
§ Pluggable backend with HDFS support

Scalability Bottlenecks of Storm (cont’d)

Open Issues of Storm

Storm&Kafka 102

Scheduling (Especially on Large Clusters)

n Currently round robin (We should be able to do
better)
n Take into account resource utilization (Network)
n Locality with collocated services (Is there any

advantage to running storm on the same nodes as
HBase and/or Kafka?)

n What about better scheduling for Storm on Yarn?
n When is it worth it to kill a worker because a

better location is available? (automatic
rebalance)
n Slow node detection (12 ms)

Storm&Kafka 103

Storm round-robin scheduling
§ R-1/R % of traffic will be off rack where R is the number of

racks
§ N-1/N % of traffic will be off node where N is the number of

nodes
§ Does not know when resources are full (i.e. network)

Solution: Resource & Network Topography Aware Scheduler (Storm
V1.0.0, released Apr 2016) ; Also allow Pluggable Scheduler provided
by user

One slow node slows the entire topology.

Load Aware Routing (STORM-162)
Intelligent network aware routing

Other Notable New Features from Storm V1.0.0 Rel. Apr 2016
Automatic Backpressure, Native Streaming Window API,

Stateful Bolts with Automatic Checkpointing, HA Nimbus
https://storm.apache.org/2016/04/12/storm100-released.html

Scalability Bottlenecks of Storm (cont’d)

Storm&Kafka 104

How can one grow/shrink a topology
dynamically

n How to handle the different shuffles? Do we kill
everything and start over or is there a better
way?

n When should we grow or shrink?
n What do we do if there are no free resources and

we need to grow?
n Or even more difficult can we upgrade a topology

in place without killing processes?

Storm&Kafka 105

Resource Isolation/Utilization

n Isolation is handled currently by creating a mini-
cluster (whole nodes) for a single topology (so
utilization suffers).

n Can we get better utilization without letting
isolation suffer? cgroups/Docker. What about
predictability on heavily used vs. lightly used
clusters? (12ms again)

n What about if I collocate this batch on Hadoop?

Storm&Kafka 106

Higher level APIs

n Streaming SQL (Spark streaming has it already)
n Pig on Storm (Some proto-type effort but…)
n Native Window-based Processing API available

from Storm V1.0.0.

Storm&Kafka 107

Other Competing Stream Processing Systems…
n Heron (Twitter)

n Same User Programming model and API, differ mostly in the
under-the-hood system realization/ implementation, e.g.

n Written in C++ instead of Closure
n Better separation and scheduling of tasks, executors in JVM(s) for

different components of the same/ different topologies to facilitate
debugging

n Backpressure-based congestion control of dataflow within a topology
n Google Cloud Dataflow (http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf)

n Open Source API, BUT NOT implementation
n Based on technologies from Google’s FlumeJava & MillWheel
n Great stream processing concepts

n Spark Streaming (BDAS of Berkeley/Databricks)
n Micro-batch processing instead of true real-time streaming

n Microsoft’s Naiad, Apache Apex (DataTorrent), Flink, Samza
(LinkedIn), Amazon’s Kinesis, etc

Storm&Kafka 108

A Summary on What Storm does
n Distribute Code and Configuration
n Robust Process Management
n Monitors Topologies and Assign Failed Tasks
n Provide Reliability by Tracking Tuple Tree
n Routing and Partitioning of Streams
n Serialization
n Fine-grained Performance Statistics/ Status of

Topologies

Storm&Kafka 109

Additional References

n A few Storm books are already available, e.g.
n Storm Applied by S.T. Allen et al, published by Manning, 2015

n Storm documentation
n https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_storm-

component-guide/bk_storm-component-guide.pdf
n http://storm.apache.org/releases/1.2.2/index.html

n Storm Kafka Integration
n http://storm.apache.org/releases/1.2.2/storm-kafka-client.html

n Mailing lists
n https://mail-archives.apache.org/mod_mbox/storm-user/

n Related work aka tools that are similar to Storm – try them, too!
n Spark Streaming

n See comparison Apache Storm vs. Apache Spark Streaming, by P. Taylor Goetz (Storm
committer)

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_storm-component-guide/bk_storm-component-guide.pdf
http://storm.apache.org/releases/1.2.2/index.html
http://storm.apache.org/releases/1.2.2/storm-kafka-client.html
https://mail-archives.apache.org/mod_mbox/storm-user/
https://spark.apache.org/streaming/
http://www.slideshare.net/ptgoetz/apache-storm-vs-spark-streaming

Apache Kafka -- Unified Logging Platform

Storm&Kafka 111

Acknowledgements
n The slides are adapted from the following source materials:

n Jay Kreps, “The Log: What every software engineer should know about real-time
data’s unifying abstraction,” Linkedin Engineering Blog,
https://engineering.linkedin.com/distributed-systems/log-what-every-software-
engineer-should-know-about-real-time-datas-unifying, Dec 2013.

n Jun Rao, “Intra-cluster Replication for Apache Kafka,” ApacheCon 2013.
n Joel Koshy, “Building a Real-Time Data Pipeline: Apache Kafka at Linkedin,”

Hadoop Summit, June 2013.
n Martin Kleppmann, “Apache Samza: Taking stream processing to the next level,”

2014
n Martin Kleppmann:“Moving faster with data streams:The rise of Samza at

LinkedIn.” 14 July 2014. http://engineering.linkedin.com/stream-
processing/moving-faster-data-streams-rise-samza-linkedin

n Jeff Holoman, Cloudera, “Kafka Introduction,” Apache Kafka ATL Meetup, 2015.
n Michael G. Noll, Verisign, “Apache Kafka 0.8 basic training,” July 2014.
n David Tucker (Confluent), David Ostrovsky (Couchbase), “State of the Streaming

Platform 2016 – What’s new in Apache Kafka and Confluent platform,” Nov 2016.
n Cloudurable, “Introduction to Kafka”, May 2017.
n Cloudurable, “Kafka Tutorial,” May 2017. http://cloudurable.com/blog/kafka-

tutorial/index.html
n All copyrights belong to the original authors of the materials.

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Storm&Kafka 112

Outline
n Motivation for Kafka
n What is Kafka ?
n Real-world Use Cases
n System Architecture
n Key Concepts/ Terminologies in Kafka
n Replication Support
n Performance

Storm&Kafka 113

Motivation: Linkedin Before Kafka

Storm&Kafka 114

Linkedin After Kafka

Storm&Kafka 115

Motivation for Building Kafka in Linkedin
n Goal: To provide a High-Performance, Reliable

Distributed Unified Logging Platform for LinkedIn
n Named after German author/writer Franz Kafka by one of

its developers (Jay Kreps) because
“It is a system optimized for writing”.

n Originated at LinkedIn, open sourced in early 2011
n http://kafka.apache.org/
n In 2014, core development team of Kafka at Linkedin formed

Confluent, a start-up to further develop a Kafka-centric real-time
big data processing platform.

n Implemented in Scala, some Java

http://kafka.apache.org/

Storm&Kafka 116

Requirements for Kafka
n Linkedin’s motivation for Kafka was:

n “A unified platform for handling all the real-time data feeds a large
company might have.”

n Must have:
n High throughput to support high volume event feeds.
n Support real-time processing of these feeds to create

new, derived feeds.
n Support large data backlogs to handle periodic ingestion

from offline systems.
n Support low-latency delivery to handle more traditional

messaging use cases.
n Guarantee fault-tolerance in the presence of machine

failures.

Storm&Kafka 117

What is Kafka ?
n A Distributed Unified Logging Platform

n Kafka maintains feeds (streams) of records (messages)
organized in different categories called topics.

n Support the “Publish and Subscribe” model for streams of
records (messages)

n Fault Tolerant Storage via Replication to multiple servers
n Process records as they occur
n Fast, Efficient I/O, Batching, Compression and more
n Decouple the Producers and Consumers of those records

(messages)

Storm&Kafka 118

Writes

Table Index Index
Material

ized
View

Commit Log...

What is a commit log?

Storm&Kafka 119

The Log as a Messaging system

0 1 2 3 4 5 6 7 8 9 10 11 12Log

Data Source

writes

Destination
 System A
(time = 7)

reads

Destination
 System B
(time = 11)

reads

Storm&Kafka 120

Linkedin After Kafka

Storm&Kafka 121

Kafka @ LinkedIn, 2014

https://twitter.com/SalesforceEng/status/466033231800713216/photo/1
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

(Numbers have increased since.)

https://twitter.com/SalesforceEng/status/466033231800713216/photo/1
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

Storm&Kafka 122

Kafka @ LinkedIn, 2014
n Multiple data centers, multiple clusters

n Mirroring between clusters / data centers

n What type of data is being transported through Kafka?
n Metrics: operational telemetry data
n Tracking: everything a LinkedIn.com user does
n Queuing: between LinkedIn apps, e.g. for sending emails

n To transport data from LinkedIn’s apps to Hadoop, and back
n In total ~ 200 billion events/day via Kafka

n Tens of thousands of data producers, thousands of consumers
n 7 million events/sec (write), 35 million events/sec (read) <<< may include replicated

events
n But: LinkedIn is not even the largest Kafka user anymore as of 2014

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.slideshare.net/JayKreps1/i-32858698
http://search-hadoop.com/m/4TaT4qAFQW1

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.slideshare.net/JayKreps1/i-32858698
http://search-hadoop.com/m/4TaT4qAFQW1

Storm&Kafka 123

Kafka Usage at LinkedIn (circa 2013)

LinkedIn Corporation ©2013 All Rights Reserved

Web

Apps
...

Web

Apps

Web

Apps

services

services

servicesK
a
fk

a
 C

lu
s
te

r

services

services

services

Kafka Cluster

Live Datacenter

Web

Apps
...

Web

Apps

Web

Apps

services

services

servicesK
a
fk

a
 C

lu
s
te

r

services

services

services

Live Datacenter

...

Hadoop
Cluster

Ofine Datacenter

Hadoop
Cluster

Ofine Datacenter

Apps
Data

Ware-

house

Storm&Kafka 124

Kafka @ LinkedIn, 2014

1
2

https://kafka.apache.org/documentation.html#java

“For reference, here are the stats on one of
LinkedIn's busiest clusters (at peak):

15 brokers
15,500 partitions (replication factor 2)

400,000 msg/s inbound
70 MB/s inbound

400 MB/s outbound”

https://kafka.apache.org/documentation.html

Storm&Kafka 125

General Use Cases of Kafka
Major Role (via the original Kafka “Core components”):
nLog Aggregation
nCapture and Ingest Data into Spark/ Hadoop/ Storm/ Flink
etc
nCommand-Query Responsibility Segregation (CRQS),
Replay, Error Recovery
nGuaranteed Distributed Commit Log for in-memory
computing
nMetrics Collection and Monitoring
Supporting Role (with recent extensions from Confluent):
nStream Processing
nWebsite Activity Tracking
nReal Time Analytics

Storm&Kafka 126

Sample Use Cases of Kafka
n Linkedin: Activity streams, Operational Metrics, data bus

n 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/sec)
(circa May 2014)

n Netflix: Real-time Monitoring and Event Processing
n Twitter: Use it with Storm for stream processing pipelines
n Spotify: Log delivery (for 4 hrs down to 10sec), Hadoop
n Loggy: Log collection and processing
n Mozilla: Telemetry data
n Square: Kafka as “data-bus” to move all system events to

various Square datacenters (logs, custom events,
metrics, etc). Outputs to other systems, e.g. Alert
generation

Storm&Kafka 127

Other Users of Kafka
n 1/3 of all Fortunate 500 companies

n Top 10 Travel companies ; 7 of Top 10 Banks ; 8 of Top 10
Insurance companies ; 9 of Top 10 Telecom coms.

n Airbnb, Uber, Tumbler, Goldman Sachs, PayPal, Cisco,
CloudFlare, etc.

n LinkedIn, Microsoft and Netflix process 4 comma messages a
day with Kafka (1,000,000,000,000) (circa 2017)

Storm&Kafka 128

Big Data Frameworks Adoption Trends

Storm&Kafka 129

Typical Service Architecture with Kafka

Storm&Kafka 130

Kafka + X for processing the data?
n Kafka + Storm often used in combination, e.g. Twitter

n Kafka + custom
n “Normal” Java multi-threaded setups
n Akka actors with Scala or Java, e.g. Ooyala

n Additional “partners”:
n Samza (since Aug ’13) – also by LinkedIn
n Spark Streaming, part of Spark (since Feb ’13)

n Kafka + Camus for Kafka->Hadoop ingestion
n Camus phased out/ replaced by Globbin

n Kafka (core) + extended Open-source frameworks from
Confluent e.g.
n KSQL (Kafka SQL), Kafka Streams, Kafka Connect & Connectors,

Schema Registry, REST Proxy, MQTT Proxy ;

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

Storm&Kafka 131

n Broker: Kafka server that runs in a Kafka Cluster. Each
Cluster has 1+ Broker ; Each Broker has a Unique Broker ID

n ZooKeeper: Coordinate Brokers/Cluster topology:
n Stable storage for Cluster configuration
n Election for Broker and Partition Leaders ; Coordinate Cluster changes
n Used by Consumers to track message (reading) offsets in v0.8 [replaced

by the use of Special Topics in v0.9]

System Architecture of Kafka
(its Core Components)

Storm&Kafka 132

Key Concepts/ Terminologies of Kafka

n Producers write data to Brokers.
n Consumers read data from Brokers.
n Data is stored in Topics.
n Topics are split into Partitions, which are Replicated.
n All this is distributed.

Storm&Kafka 133

Illustration of a Multi-Broker Kafka Cluster

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Storm&Kafka 134

Broker(s)

Topics

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

n Topic: feed name to which messages are
published
n Example: “zerg.hydra”

Storm&Kafka 135

Broker(s)

Topics

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Older msgs Newer msgs

Consumer group C1 Consumers use an “offset pointer” to
track/control their read progress

(and decide the pace of consumption)
Consumer group C2

Storm&Kafka 136

Topics
n Creating a topic

n CLI (following example for Kafka version 0.8x only)

n API
https://github.com/miguno/kafka-storm-starter

n Auto-create via auto.create.topics.enable = true
n Modifying a topic

n https://kafka.apache.org/documentation.html#basic_ops_modify_topic

n Deleting a topic

$ kafka-topics.sh --zookeeper zookeeper1:2181 --create --topic zerg.hydra \
--partitions 3 --replication-factor 2 \
--config x=y

https://github.com/miguno/kafka-storm-starter
https://kafka.apache.org/documentation.html

Storm&Kafka 137

Partitions
n A topic consists of partitions.
n Partition: ordered + immutable sequence of

messages that is continually appended to

Storm&Kafka 138

Producers
n Producers publish data to the topics of their

choice.
n Producer is responsible for choosing which

message to assign to which partition within the
topic.

n This can be done in a round-robin fashion simply
to balance load or it can be done according to
some semantic partition function

Storm&Kafka 139

Partitions
n #partitions of a topic is configurable
n #partitions determines max # of consumers (threads)

in each Consumer Group
n Parallelism (same idea as sharding in database)
n Cf. parallelism of Storm’s KafkaSpout via

builder.setSpout(,,N)

n Consumer group A, with 2 consumers, reads from a 4-partition topic
n Consumer group B, with 4 consumers, reads from the same topic

Storm&Kafka 140

Reading data from Kafka
Consumer “groups”
§Allow multi-threaded and/or multi-machine consumption from Kafka topics.
§Consumers “join” a group by using the same group.id
§Kafka guarantees a message is only ever read by a single consumer in a
group => processing order guarantee for messages within a partition.

n Kafka assigns the partitions of a topic to the consumers in a group so that
each partition is consumed by exactly one consumer in the group.

n Maximum parallelism of a consumer group:
#consumers (in the group) =< #partitions

Storm&Kafka 141

Consumers
n Kafka offers a single consumer abstraction that generalizes

both queuing and publish-subscribe mode.
n Consumers label themselves with a consumer group name,

and each message published to a topic is delivered to one
consumer instance within each subscribing consumer
group.

n Kafka is able to provide both ordering guarantees and
load balancing over a pool of consumer processes, by
guarantee each partition is consumed by exactly one
consumer in the group.
=> There cannot be more consumer instances in a consumer group
than partitions.

n Kafka only provides a total order over messages within a
partition, not between different partitions in a topic.

Storm&Kafka 142

Partition offsets
n Offset: messages in the partitions are each

assigned a unique (per partition) and sequential
id called the offset
n Consumers track their pointers via (offset, partition,

topic) tuples ; This offset is controlled by the Consumer
Consumer group C1

Storm&Kafka 143

Guarantees supported by Kafka
n Messages sent by a producer to a particular topic

partition will be appended in the order they are
sent.

n A consumer instance sees messages in the order
they are stored in the log.

Storm&Kafka 144

Distribution and Replication of a Partition
n The partitions of the log are distributed over the servers

(brokers) in the Kafka cluster
n Each partition is replicated across a configurable number

of servers for fault tolerance.
n Each partition has one server which acts as the "leader"

and zero or more servers which act as "followers".
n If the leader fails, one of the followers will automatically

become the new leader.
n Each server acts as a leader for some of its partitions and

a follower for others so load is well balanced within the
cluster

Storm&Kafka 145

Topics vs. Partitions vs. Replicas

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Storm&Kafka 146

Distribution and Replication of a Partition
(cont’d)

n The leader of a partition handles all read and write
requests for the partition while the followers (Replicas)
ONLY passively replicate the leader.
n Replicas exist solely to prevent data loss.
n Replicas are never read from, never written to.

n They do NOT help to increase producer or consumer
parallelism!

n Kafka tolerates (numReplicas - 1) dead brokers before
losing data

n LinkedIn: numReplicas == 2 à 1 broker can die

Storm&Kafka 147

Inspecting the current state of a topic
n --describe the topic

n Leader: brokerID of the currently elected leader broker
n Replica ID’s = broker ID’s

n ISR = “in-sync replica”, replicas that are in sync with the
leader

n In this example:
n Broker 0 is leader for partition 1.
n Broker 1 is leader for partitions 0 and 2.
n All replicas are in-sync with their respective leader

partitions.

$ kafka-topics.sh --zookeeper zookeeper1:2181 --describe --topic zerg.hydra
Topic:zerg2.hydra PartitionCount:3 ReplicationFactor:2 Configs:

Topic: zerg2.hydra Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: zerg2.hydra Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0,1
Topic: zerg2.hydra Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0

Storm&Kafka 148

Message Delivery Semantics
n At Least Once (default)

n Messages are never lost but may be redelivered
n At Most Once

n Messages can be lost but never redelivered
n Exactly Once

Storm&Kafka 149

Achieving Exactly Once Semantics
n Must consider 2 components

n Durability guarantees when publishing a message (by the
Producer)

n Durability guarantees when reading a message (by a
Consumer)

n For the Producer
n What happens when a produce request was sent but a

network error returned before an ACK ?
n Use a Single writer per partition and check the latest

committed value after network errors
n For a Consumer

n Include a Unique ID (e.g. UUID) and de-duplicate records
n Consider storing offsets with data

Storm&Kafka 150

Kafka Record Retention
n Kafka cluster retains all published records (as long as there

is enough storage)
n Time-based – Configurable Retention period, e.g. 3 days, 2 weeks or

1 month
n Size-based – Configurable based on size
n Compaction – keeps latest records

n Records written to Kafka are persisted to disk and replicated
to other servers for fault-tolerance

n Records are available for consumption until discarded by
time, size or compaction

n Consumption speed not impacted by size as Kafka always
write to the end of the (topic) log

n Record (message) Producers can wait on Acknowledgement
n s.t. Write not complete until properly replicated

Storm&Kafka 151

Writing Data to Kafka

For more detail tutorials, see:
http://cloudurable.com/blog/kafka-tutorial-kafka-producer/index.html

Storm&Kafka 152

Writing data to Kafka
n Use Kafka “Producers” to write data to Kafka brokers.

n Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
n Two modes of writing: “async” and “sync”

n Different semantics
n Sync Producer “send” call will block !
n Async Producer is preferred to achieve high throughput (non-

blocking)
n Important Configuration settings for Producers:

client.id identifies producer app, e.g. in system logs

producer.type async or sync

acks acking semantics

serializer.class configure encoder, e.g. using Avro

Bootstrap.servers For bootstrapping from a list of well-known brokers

Storm&Kafka 153

Async Producer
n Sends messages in background = no blocking in client.
n Provides more powerful batching of messages.
n Wraps a sync producer, or rather a pool of them.
n Communication from async->sync producer happens via a

queue.
Caveats
n Async producer may drop messages if its queue is full.

n Solution 1: Don’t push data to producer faster than it is able to send
to brokers.

n Solution 2: Queue full == need more brokers, add them now! Use
this solution in favor of solution 3 particularly if your producer cannot
block (async producers).

n Solution 3: Set queue.enqueue.timeout.ms to -1 (default). Now the
producer will block indefinitely and will never willingly drop a message.

n Solution 4: Increase queue.buffering.max.messages (default: 10,000).

Storm&Kafka 154

Message ACKing for Producers
n Background:

n In Kafka, a message is considered committed when “any required” ISR
(in-sync replicas) for that partition have applied it to their data log.

n Message acking is about conveying this “Yes, committed!” information
back from the brokers to the producer client.

n Exact meaning of “any required” is defined by
request.required.acks.

n Only producers must configure acking
n Exact behavior is configured via request.required.acks, which

determines when a produce request is considered completed.
n Allows you to trade latency (speed) <-> durability (data safety).
n Consumers: Acking and how you configured it on the side of producers

do not matter to consumers because only committed messages are
ever given out to consumers. They don’t need to worry about potentially
seeing a message that could be lost if the leader fails.

Storm&Kafka 155

Message ACKing (cont’d)
§ Typical values of request.required.acks

n 0: producer never waits for an ack from the broker.
§ Gives the lowest latency but the weakest durability guarantees.

n 1: producer gets an ack after the leader replica has received the data.
§ Gives better durability as the we wait until the lead broker acks the request.

Only msgs that were written to the now-dead leader but not yet replicated will
be lost.

n -1: producer gets an ack after all ISR have received the data.
§ Gives the best durability as Kafka guarantees that no data will be lost as

long as at least one ISR remains.

§ Beware of interplay with request.timeout.ms!
n "The amount of time the broker will wait trying to meet the

`request.required.acks` requirement before sending back an error to the
client.”

n Caveat: Message may be committed even when broker sends timeout
error to client (e.g. because not all ISR ack’ed in time). One reason for
this is that the producer acknowledgement is independent of the leader-
follower replication, and ISR’s send their acks to the leader, the latter of
which will reply to the client.

be
tte

r
la

te
nc

y
be

tte
r

du
ra

bi
lit

y

Storm&Kafka 156

Sample Java code for a Kafka Producer
package de.predic8.h_performance;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import javax.json.Json;
import javax.json.JsonObject;
import java.util.Properties;
import static java.lang.Math.random;
import static java.lang.Math.round;
import static org.apache.kafka.clients.producer.ProducerConfig.*;

public class PerformanceProducer {

public static void main(String[] args) throws InterruptedException {

Properties props = new Properties();
props.put(BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ACKS_CONFIG, "all");
props.put(RETRIES_CONFIG, 0);
props.put(BATCH_SIZE_CONFIG, 32000);
props.put(LINGER_MS_CONFIG, 100);
props.put(BUFFER_MEMORY_CONFIG, 33554432);
props.put(KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.LongSerializer");
props.put(VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.LongSerializer");

Producer<Long, Long> producer = new KafkaProducer<>(props);

long t1 = System.currentTimeMillis();

long i = 0;
for(; i < 1000000; i++) {

producer.send(new ProducerRecord<>("produktion", i, i));
}

producer.send(new ProducerRecord<Long,Long>("production", (long) -1, (long)-1));
System.out.println("fertig " + i + " Nachrichten in " + (System.currentTimeMillis() - t1 + " ms"));

producer.close();
}

}

Storm&Kafka 157

Write operations behind the scenes
§ When writing to a topic in Kafka, producers write directly

to the partition leaders (brokers) of that topic
n Remember: Writes always go to the leader ISR of a partition!

§ This raises two questions:
n How to know the “right” partition for a given topic?
n How to know the current leader broker/replica of a partition?

Storm&Kafka 158

§ In Kafka, a producer – i.e. the client – decides to which
target partition a message will be sent.
n Can be random ~ load balancing across receiving brokers.
n Can be semantic based on message “key”, e.g. by user ID or

domain name.
§ Here, Kafka guarantees that all data for the same key will go to the

same partition, so consumers can make locality assumptions.

§ But there’s one catch with line 2 (i.e. no key)

1) How to know the “right” partition when sending?

Storm&Kafka 159

Keyed vs. non-keyed messages in Kafka

§ If a key is not specified:

n Producer will ignore any configured partitioner.
n It will pick a random partition from the list of available partitions and stick to it for

some time before switching to another one = NOT round robin or similar!
§ Why? To reduce number of open sockets in large Kafka deployments (KAFKA-1017).
§ Default: 10mins, cf. topic.metadata.refresh.interval.ms
§ See implementation in DefaultEventHandler#getPartition()

n If there are fewer producers than partitions at a given point of time, some
partitions may not receive any data. How to fix if needed?

§ Try to reduce the metadata refresh interval topic.metadata.refresh.interval.ms
§ Specify a message key and a customized random partitioner.

n In practice it is not trivial to implement a correct “random” partitioner in Kafka 0.8.
§ Partitioner interface in Kafka 0.8 lacks sufficient information to let a partitioner select a

random and available partition. Same issue with DefaultPartitioner.

https://issues.apache.org/jira/browse/KAFKA-1017
http://mail-archives.apache.org/mod_mbox/kafka-dev/201310.mbox/%3CCAFbh0Q0aVh+vqxfy7H-+MnRFBt6BnyoZk1LWBoMspwSmTqUKMg@mail.gmail.com%3E

Storm&Kafka 160

Keyed vs. non-keyed messages in Kafka

§ If a key is specified:

nKey is retained as part of the msg, will be stored in the
broker.
nOne can design a partition function to route the msg
based on key.
nThe default partitioner assigns messages to a partition
based on their key hashes, via key.hashCode %
numPartitions.
nCaveat:

§ If you specify a key for a message but do not explicitly wire in a custom
partitioner via partitioner.class, your producer will use the default partitioner.

§ So without a custom partitioner, messages with the same key will still end up in
the same partition! (cf. default partitioner’s behavior above)

Storm&Kafka 161

2) How to know the current leader of a partition?
§ Producers: broker discovery aka bootstrapping

n Producers don’t talk to ZooKeeper, so it’s not through
ZK.

n Broker discovery is achieved by providing producers
with a “bootstrapping” broker list, cf.
metadata.broker.list

§ These brokers inform the producer about all alive brokers and
where to find current partition leaders. The bootstrap brokers
do use ZK for that.

§ Impacts on failure handling
n In Kafka 0.8 the bootstrap list is static/immutable

during producer run-time. This has limitations and
problems as shown in next slide.

n The bootstrap approach has been improved in Kafka
0.9. This change makes the life of Ops easier.

Storm&Kafka 162

Bootstrapping in Kafka
§ Scenario: N=5 brokers total, 2 of which are for bootstrap

§ Do’s:
n Take down one bootstrap broker (e.g. broker2), repair it, and bring it back.
n In terms of impacts on broker discovery, you can do whatever you want to

brokers 3-5.
§ Don’ts:

n Stop all bootstrap brokers 1+2. If you do, the producer stops working!
§ To improve operational flexibility, use VIP’s or similar for values in

metadata.broker.list.

broker1 broker2 broker3 broker4 broker5

Storm&Kafka 163

Reading Data from Kafka

For more detail tutorials, see:
http://cloudurable.com/blog/kafka-tutorial-kafka-consumer/index.html

Storm&Kafka 164

Reading data from Kafka
§ You use Kafka “consumers” to read data from Kafka brokers.

n Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
n The Kafka project only provides the JVM implementation.

§ Has risk that a new Kafka release will break non-JVM clients.

§ Three API options for JVM users:
1. High-level consumer API <<< in most cases you want to use this one!
2. Simple consumer API
3. Hadoop consumer API

§ Most noteworthy: The “simple” API is anything but simple. J
n Prefer to use the high-level consumer API if it meets your needs (it should).
n Counter-example: Kafka spout in Storm 0.9.2 uses simple consumer API to

integrate well with Storm’s model of guaranteed message processing.

https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html

Storm&Kafka 165

Reading data from Kafka
§ Consumers pull from Kafka (there’s no push)

n Allows consumers to control their pace of consumption.
n Allows to design downstream apps for average load, not peak load (cf. Loggly

talk)

§ Consumers’ responsibility to track their read positions i.e. offsets
n High-level consumer API: takes care of this for you, stores offsets in ZooKeeper
n Simple consumer API: nothing provided, it’s totally up to you (the programmer)
n What does this offset management allow you to do?

§ Consumers can deliberately rewind “in time” (up to the point where Kafka
prunes), e.g. to replay older messages.

n Cf. Kafka spout in Storm 0.9.2.
§ Consumers can decide to only read a specific subset of partitions for a given

topic.
n Cf. Loggly’s setup of (down)sampling a production Kafka topic to a manageable

volume for testing
§ Run offline, batch ingestion tools that write (say) from Kafka to Hadoop HDFS

every hour.
n Cf. LinkedIn Camus, Pinterest Secor

http://www.youtube.com/watch?v=LpNbjXFPyZ0

Storm&Kafka 166

Reading data from Kafka
§ Important consumer configuration settings

group.id assigns an individual consumer to a “group”

zookeeper.connect to discover brokers/topics/etc., and to store consumer
state (e.g. when using the high-level consumer API)

fetch.message.max.bytes number of message bytes to (attempt to) fetch for each
partition; must be >= broker’s message.max.bytes

Storm&Kafka 167

Sample Java code for a Kafka Consumer
package com.cloudurable.kafka;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.common.serialization.LongDeserializer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaConsumerExample {

private final static String TOPIC = "my-example-topic";
private final static String BOOTSTRAP_SERVERS =

"localhost:9092,localhost:9093,localhost:9094";
...

}
public class KafkaConsumerExample {

private static Consumer<Long, String> createConsumer() {
final Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,

BOOTSTRAP_SERVERS);
props.put(ConsumerConfig.GROUP_ID_CONFIG,

"KafkaExampleConsumer");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

LongDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class.getName());

// Create the consumer using props.
final Consumer<Long, String> consumer =

new KafkaConsumer<>(props);

// Subscribe to the topic.
consumer.subscribe(Collections.singletonList(TOPIC));
return consumer;

}

…
static void runConsumer() throws InterruptedException {

final Consumer<Long, String> consumer = createConsumer();

final int giveUp = 100; int noRecordsCount = 0;

while (true) {
final ConsumerRecords<Long, String> consumerRecords =

consumer.poll(1000);

if (consumerRecords.count()==0) {
noRecordsCount++;
if (noRecordsCount > giveUp) break;
else continue;

}

consumerRecords.forEach(record -> {
System.out.printf("Consumer Record:(%d, %s, %d, %d)\n",

record.key(), record.value(),
record.partition(), record.offset());

});

consumer.commitAsync();
}
consumer.close();
System.out.println("DONE");

}

public static void main(String... args) throws Exception {
runConsumer();

}
}

Source: http://cloudurable.com/blog/kafka-tutorial-kafka-consumer/index.html

Storm&Kafka 168

Recall: Reading data from Kafka
Consumer “groups”
§Allow multi-threaded and/or multi-machine consumption from Kafka topics.
§Consumers “join” a group by using the same group.id
§Kafka guarantees a message is only ever read by a single consumer in a
group.

n Kafka assigns the partitions of a topic to the consumers in a group so that
each partition is consumed by exactly one consumer in the group.

n Maximum parallelism of a consumer group: #consumers (in the group) <=
#partitions

Storm&Kafka 169

Guarantees when reading data from Kafka
§ A message is only ever read by a single consumer in a group.
§ A consumer sees messages in the order they were stored in

the log.
§ The order of messages is only guaranteed within a partition.

n No order guarantee across partitions, which includes no order guarantee per-
topic.

n If total order (per topic) is required you can consider, for instance:
§ Use #partition = 1. Good: total order. Bad: Only 1 consumer process at a time.
§ “Add” total ordering in your consumer application, e.g. a Storm topology.

§ Some gotchas:
n If you have multiple partitions per thread there is NO guarantee about the order

you receive messages, other than that within the partition the offsets will be
sequential.

§ Example: You may receive 5 messages from partition 10 and 6 from partition 11, then
5 more from partition 10 followed by 5 more from partition 10, even if partition 11 has
data available.

n Adding more processes/threads will cause Kafka to rebalance, possibly changing
the assignment of a partition to a thread (whoops).

Storm&Kafka 170

Rebalancing: how consumers meet brokers
Remember?

§The assignment of brokers – via the partitions of a topic – to
consumers is quite important, and it is dynamic at run-time.

Storm&Kafka 171

Rebalancing: how consumers meet brokers

§ Why “dynamic at run-time”?
n Machines can die, be added, …
n Consumer apps may die, be re-configured, added, …

§ Whenever this happens a rebalancing occurs.
n Rebalancing is a normal and expected lifecycle event in

Kafka.
n But it’s also a nice way to shoot yourself or Ops in the foot.

§ Why is this important?
n Most Ops issues are due to

1) rebalancing and 2) consumer lag.
n So Dev + Ops must understand what goes on.

Storm&Kafka 172

Rebalancing: how consumers meet brokers
§ Rebalancing?

n Consumers in a group come into consensus on which consumer
is consuming which partitions à required for distributed
consumption

n Divides broker partitions evenly across consumers, tries to reduce
the number of broker nodes each consumer has to connect to

§ When does it happen? Each time:
n a consumer joins or leaves a consumer group, OR
n a broker joins or leaves, OR
n a topic “joins/leaves” via a filter, cf.
createMessageStreamsByFilter()

§ Examples:
n If a consumer or broker fails to heartbeat to ZK à rebalance!
n createMessageStreams() registers consumers for a topic, which

results in a rebalance of the consumer-broker assignment.

Storm&Kafka 173

Kafka Polyglot Clients/ Wire Protocol
n Kafka communication from clients and servers wire protocol

over TCP
n Protocol versioned
n Maintains backwards compatibility
n Many Languages supported
n Kafka REST proxy allows easy integration with other

systems via HTTP and JSON
n Also provide Avro/ Schema registry support via an extended

Kafka ecosystem

Storm&Kafka 174

Serialization in Kafka

§ Kafka does not care about data format of msg payload
§ Up to developer (= you) to handle

serialization/deserialization
n Common choices in practice: Avro, JSON

(Code above is from the High Level Consumer API)

Storm&Kafka 175

Serialization in Kafka: using Avro
§ One way to use Avro in Kafka is via Twitter Bijection.

n https://github.com/twitter/bijection

§ Approach: Convert pojo to byte[], then send byte[] to Kafka.
n Bijection in Scala:

n Bijection in Java: https://github.com/twitter/bijection/wiki/Using-bijection-from-java

§ Full Kafka/Bijection example:
n KafkaSpec in kafka-storm-starter

§ Alternatives to Bijection:
n e.g. https://github.com/miguno/kafka-avro-codec

1
7

https://github.com/twitter/bijection
https://github.com/twitter/bijection/wiki/Using-bijection-from-java
https://github.com/miguno/kafka-storm-starter/blob/develop/src/test/scala/com/miguno/kafkastorm/integration/KafkaSpec.scala
https://github.com/miguno/kafka-avro-codec

Storm&Kafka 176

Data compression in Kafka
§ Kafka provides E2E Batch Compression
§ Bottleneck is not always CPU or disk but often network

bandwidth
n Especially in Cloud, Containerized and Virtualized environments
n Especially when communicating between Datacenters or via WAN

§ Instead of compressing messages one at a time,
compresses whole batch and sent to Kafka Broker in one
go !
n Interplay with batching of messages, e.g. larger batches typically achieve

better compression ratios.
n Message batch gets written in compressed form in log partition and do NOT

get decompressed until they are consumed.

§ GZIP, Snappy and LZ4 compression algorithms supported
§ Details about compression in Kafka:

n https://cwiki.apache.org/confluence/display/KAFKA/Compression
1
7

https://cwiki.apache.org/confluence/display/KAFKA/Compression

Storm&Kafka 177

Log Compaction Overview
n Recall Kafka can delete older records based on

n time period
n size of a log

n Kafka also supports log compaction for Record Key
Compaction

n Log compaction: keep latest version of record and
delete older versions

Storm&Kafka 178

Log Compaction Structure

n Log has head and tail
n Head of compacted log identical to a traditional Kafka log
n New records get appended to the head
n Log compaction works at tail of the log
n Tail gets compacted
n Records in tail of log retain their original offset when written

after compaction

Storm&Kafka 179

Log Compaction Cleaning for Key-value Data

Storm&Kafka 180

Log Compaction Overview

n Log compaction retains last known value for each record
key

n Useful for restoring state after a crash or system failure,
e.g., in memory service, persistent data store, reloading a
cache

n Data streams is to log changes to keyed, mutable data,
n e.g., changes to a database table, changes to object in in-memory

microservice
n Topic log has full snapshot of final values for every key - not

just recently changed keys
n Downstream consumers can restore state from a log

compacted topic

Storm&Kafka 181

Log Compaction Details
n All offsets remain valid, even if record at offset has been

compacted away (next highest offset)

n Compaction also allows for deletes. A message with a key
and a null payload acts like a tombstone (a delete marker
for that key)
n Tombstones get cleared after a period.

n Log compaction periodically runs in background by
recopying log segments.

n Compaction does not block reads and can be throttled to
avoid impacting I/O of producers and consumers

Storm&Kafka 182

Log Compaction Guarantee
n If consumer stays caught up to head of the log, it sees every

record that is written.
n Topic config min.compaction.lag.ms used to guarantee

minimum period that must pass before message can be
compacted.

n Consumer sees all tombstones as long as the consumer reaches
head of log in a period less than the topic config
delete.retention.ms (the default is 24 hours).

n Compaction will never re-order messages, just remove some.
n Offset for a message never changes.
n Any consumer reading from start of the log, sees at least final

state of all records in order they were written

Storm&Kafka 183

Failover vs. Disaster Recovery

n Kafka Replication is for Failover
n Replication of Kafka Topic Log partitions allows for

failure of a rack or AWS availability zone

n Mirror Maker is used for Disaster Recovery
n Mirror Maker replicates a Kafka cluster to another

datacenter or AWS region
n Called Mirroring since replication happens within a

cluster.

Storm&Kafka 184

How fast is Kafka?
n “Up to 2 million writes/sec on 3 cheap machines”

n Using 3 producers on 3 different machines, 3x async replication
n Only 1 producer/machine because NIC already saturated

n Sustained throughput as stored data grows
n Slightly different test config than 2M writes/sec above.

n Test setup
n Kafka trunk as of April 2013, but 0.8.1+ should be similar.
n 3 machines: 6-core Intel Xeon 2.5 GHz, 32GB RAM, 6x 7200rpm SATA, 1GigE

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

Storm&Kafka 185

Why is Kafka so Fast ?
n Adopt the principle of Zero Copy

n Using sendfile (Java’s NIO FileChannel transferTo method)
n Implement Linux sendfile() which skips unnecessary copies

n Batch Data in Chunks during Disk and Network access
n The I/O scheduler will batch together consecutive small

writes into bigger physical writes which improve system
throughput

n The I/O scheduler will attempt to re-sequence writes to
minimize movement of the disk head which improves
system throughput

n Provide more efficient data compression
n Sequential Disk Writes

n Write to immutable commit log => Disk accessed in sequential
manner

n Eliminate slow disk seek or random I/O operations

Storm&Kafka 186

Why is Kafka so Fast ? (cont’d)

n Heavily relies on Linux PageCache
n It automatically uses all free memory on the machine
n In a system where consumers are roughly caught up with

producers, you are essentially reading data from cache
n Scale out Horizontally

n Use 100’s to 1000’s of partitions (i.e. sharding) for a single topic
(group of messages of interest)

n Spread workload to thousands of servers to handle massive load

Storm&Kafka 187

Why is Kafka so fast (cont’d) ?
n Fast writes:

n While Kafka persists all data to disk, essentially all writes go to the
page cache of OS, i.e. RAM.

n Cf. hardware specs and OS tuning

n Fast reads:
n Very efficient to transfer data from page cache to a network socket
n Linux: sendfile() system call

n Combination of the two = fast Kafka!
n Example (Operations): On a Kafka cluster where the consumers are

mostly caught up you will see no read activity on the disks as they
will be serving data entirely from cache.

http://kafka.apache.org/documentation.html#persistence

http://kafka.apache.org/documentation.html

Storm&Kafka 188

Why is Kafka so fast?
n Example: Loggly.com, who run Kafka & Co. on Amazon

AWS
n “99.99999% of the time our data is coming from disk cache and

RAM; only very rarely do we hit the disk.”
n “One of our consumer groups (8 threads) which maps a log to a

customer can process about 200,000 events per second draining
from 192 partitions spread across 3 brokers.”

n Brokers run on m2.xlarge Amazon EC2 instances backed by
provisioned IOPS

http://www.developer-tech.com/news/2014/jun/10/why-loggly-loves-apache-kafka-how-unbreakable-infinitely-scalable-messaging-makes-log-management-better/

http://aws.amazon.com/ec2/instance-types/
http://www.developer-tech.com/news/2014/jun/10/why-loggly-loves-apache-kafka-how-unbreakable-infinitely-scalable-messaging-makes-log-management-better/

Storm&Kafka 189

Recap: Key Strength of Kafka

n High Performance – High Throughput, Low-Latency
n Stable, Robust Replication => Reliable, Durability
n Support Flexible Publish-Subscribe model for Data

Producers and Consumers
n Producer Tunable Consistency Guarantees
n Ordering Preserved (at Shard Level, i.e. Topic Partition)
n Works well with Systems that have Data Streams to

process, aggregate, transform and load to other stores
n “Connector” modules available for most mainstream Big Data

processing frameworks.

Storm&Kafka 190

Comparing Kafka with other Alternatives

Storm&Kafka 191

Kafka vs.
Message Oriented Middleware (MOM) systems
n MOM = JMS, ActiveMQ, RabbitMQ, IBM MQ

Series, Tibco, etc.
n Is Kafka a Queue or a Pub/Sub/Topic?

n Yes
n Kafka is like a Queue per consumer group

n Kafka is a queue system per consumer in consumer
group so load balancing like JMS, RabbitMQ queue

n Kafka is like Topics in JMS, RabbitMQ, MOM
n Topic/pub/sub by offering Consumer Groups which act

like subscriptions
n Broadcast to multiple consumer groups

Storm&Kafka 192

Kafka vs.
Message Oriented Middleware (MOM) systems
n By design, Kafka is better suited for scale than traditional

MOM systems due to partition topic log
n Load divided among Consumers for read by partition
n Handle parallel consumers better than traditional MOM

n Also by moving location (partition offset) in log to
client/consumer side of equation instead of the broker, less
tracking required by Broker and more flexible consumers

n Kafka written with mechanical sympathy, modern hardware,
cloud in mind
n Disks are faster
n Servers have tons of system memory
n Easier to spin up servers for scale out

Storm&Kafka 193

The Extended Kafka Universe (beyond “Kafka Core”)

Storm&Kafka 194

Kafka and Amazon Kinesis are similar
n Kinesis Streams is like Kafka Core
n Kinesis Analytics is like Kafka Streams
n Kinesis Shard is like Kafka Partition
n Similar and get used in similar use cases
n In Kinesis, data is stored in shards. In Kafka, data is stored

in partitions
n Kinesis Analytics allows you to perform SQL like queries on

data streams
n Kafka Streaming allows you to perform functional

aggregations and mutations
n Kafka integrates well with Spark and Flink which allows

SQL like queries on streams

Storm&Kafka 195

Kafka vs. Amazon Kinesis
n Data is stored in Kinesis for default 24 hours, and you can

increase that up to 7 days.
n Kafka records default stored for 7 days

n can increase until you run out of disk space.
n Decide by the size of data or by date.
n Can use compaction with Kafka so it only stores the latest timestamp

per key per record in the log
n With Kinesis data can be analyzed by Lambda before it gets

sent to S3 or RedShift
n With Kinesis you pay for use, by buying read and write units.
n Kafka is more flexible than Kinesis but you have to manage

your own clusters, and requires some dedicated DevOps
resources to keep it going

n Kinesis is sold as a service and does not require a DevOps
team to keep it going (can be more expensive and less
flexible, but much easier to setup and run)

Storm&Kafka 196

The Extended Universe of Kafka
by Confluent

Storm&Kafka 197

The “Extended” Kafka Universe

Storm&Kafka 198

The Confluent Enterprise Streaming Platform

Storm&Kafka 199

REST Proxy: Enable other Applications to
access Kafka data

n Provide a RESTful
Interface to a Kafka
Cluster
n Simplify message

creation and
consumption

n Simplify system
administration

Storm&Kafka 200

Kafka REST Proxy and Schema Registry

Storm&Kafka 201

Sample use of the Confluent Schema Registry

n Define the expected fields (schema) for each Kafka topic
n Leverage Avro to automatically handle schema changes

(e.g. new fields) => enhance backward compatibility

Storm&Kafka 202

Kafka Clients

n Define the expected fields (schema) for each Kafka topic
n Leverage Avro to automatically handle schema changes

(e.g. new fields) => enhance backward compatibility

Storm&Kafka 203

Apache Kafka Connect Library of Connectors
for Streaming Data Capture

n Fault tolerant
n Preserve Data Schema
n Manage/Support Heterogeneous Sources and Sinks

Storm&Kafka 204

Architecture of Kafka Streams

n Available as high-level DSL as well as low-level API to
enable flexible application development

n No additional cluster required
n Security and permission integrated from Kafka

Example Use Cases for
“Kafka Streams”
nMicroservices
nContinuous queries
nContinuous transformations
nEvent-triggered processes

Storm&Kafka 205

Comparison of Alternative Service Architectures
to support Enterprise-level Stream Processing

“Grain of Salt” Alert: This slide is from Confluent

Storm&Kafka 206

A Sample Streaming Data Pipeline using the
Kafka ecosystem

1. Twitter feed with sentiment data
2. Use Twitter Source connector to publish data to Kafka topic
3. Kafka Streams application augments Twitter records with sentiment analysis
4. Kafka Streams output to Couchbase
5. Couchbase Source Connector to pull data from Couchbase bucket back to

Kafka topic
6. 2nd stage Kafka Streams app saves data to another Couchbase bucket and

then onto Elastic Search

Storm&Kafka 207

Operating Kafka

Storm&Kafka 208

Kafka broker hardware specs @ LinkedIn
(circa 2014)

n Solely dedicated to running Kafka, run nothing else.
n 1 Kafka broker instance per machine

n 2x 4-core Intel Xeon (info outdated?)
n 64 GB RAM (up from 24 GB)

n Only 4 GB used for Kafka broker, remaining 60 GB for page cache
n Page cache is what makes Kafka fast

n RAID10 with 14 spindles
n More spindles = higher disk throughput
n Cache on RAID, with battery backup
n Before H/W upgrade: 8x SATA drives (7200rpm), not sure about RAID

n 1 GigE (?) NICs

n EC2 example: m2.2xlarge @ $0.34/hour, with provisioned IOPS

Storm&Kafka 209

Operating Kafka
n Typical operations tasks include:

n Adding or removing brokers
n Example: ensure a newly added broker actually receives data, which

requires moving partitions from existing brokers to the new broker
n Kafka provides helper scripts but still manual work involved

n Balancing data/partitions to ensure best performance
n Add new topics, re-configure topics

n Example: Increasing #partitions of a topic to increase max
parallelism

n Apps management: new producers, new consumers
n Biggest Challenges to handle growth of Kafka adoption,

increase in Producers, Consumers
n Most problems are due to: 1) Consumer Lag ; and 2) Rebalancing

n Original design was not created with security in mind.
n Discussion started in June 2014 to add security features.
n Covers transport layer security, data encryption at rest, non-repudiation,

A&A, …

Storm&Kafka 210

Monitoring Kafka apps: Consumer lag

n Lag is a consumer problem:
n Too slow, too much GC, losing connection to ZK or Kafka, …
n Bug or design flaw in Consumer
n Operational mistakes: e.g. you brought up 6 servers in parallel,

each one in turn triggering rebalancing, then hit Kafka's
rebalance limit;
cf. rebalance.max.retries (default: 4) & friends

Broker(s)

ne
w

Producer A1
Producer A2

Producer An
…

…

Older msgs Newer msgs

Consumer group C1

Lag = how far your consumer is behind the producers

Storm&Kafka 211

Monitoring Kafka itself (1 of 3)
n Under-replicated partitions

n For example, because a broker is down.
n Means cluster runs in degraded state.

n FYI: LinkedIn runs with replication factor of 2 => 1 broker can die.

n Offline partitions
n Even worse than under-replicated partitions!
n Serious problem (data loss) if anything but 0 offline partitions.

Storm&Kafka 212

Monitoring Kafka itself (1 of 3)
n Data size on disk

n Should be balanced across disks/brokers
n Data balance even more important than partition balance
n There are scripts for balancing data/partitions across brokers

n Broker partition balance
n Count of partitions should be balanced evenly across brokers

Storm&Kafka 213

Monitoring Kafka itself (1 of 3)
n Leader partition count

n Should be balanced across brokers so that each broker gets the
same amount of load

n Only 1 broker is ever the leader of a given partition, and only this
broker is going to talk to producers + consumers for that partition

n Non-leader replicas are used solely as safeguards against data loss
n Recent Feature to support auto-rebalance the leaders and partitions

in case a broker dies
n Network utilization

n Maxed network one reason for under-replicated partitions
n LinkedIn don't run anything but Kafka on the brokers, so network

max is due to Kafka. Hence, when they max the network, they need
to add more capacity across the board.

Storm&Kafka 214

Monitoring ZooKeeper
n Ensemble (= cluster) availability

n LinkedIn run 5-node ensembles = tolerates 2 dead
n Twitter run 13-node ensembles = tolerates 6 dead

n Latency of requests
n Metric target is 0 ms when using SSD’s in ZooKeeper machines.

n Why? Because SSD’s are so fast they typically bring down latency below ZK’s
metric granularity (which is per-ms).

n Outstanding requests
n Metric target is 0.
n Why? Because ZK processes all incoming requests serially. Non-zero

values mean that requests are backing up.

Storm&Kafka 215

“Auditing” Kafka
n Every producer is also writing messages into a special

topic about how many messages it produced, every 10mins.
n Example: "Over the last 10mins, I sent N messages to topic X.”
n This metadata gets mirrored like any other Kafka data.

n Audit consumer
n 1 audit consumer per Kafka cluster
n Reads every single message out of “its” Kafka cluster. It then

calculates counts for each topic, and writes those counts back into
the same special topic, every 10mins.

n Example: "I saw M messages in the last 10mins for topic X in THIS
cluster”

n And the next audit consumer in the next, downstream cluster does
the same thing.

Storm&Kafka 216

“Auditing” Kafka

n Monitoring audit consumers
n Completeness check

n "#msgs according to producer == #msgs seen by
audit consumer?"

n Lag
n "Can the audit consumers keep up with the incoming

data rate?"
n If audit consumers fall behind, then all your tracking

data falls behind as well, and you don't know how
many messages got produced.

Storm&Kafka 217

“Auditing” Kafka
n Audit UI

n Only reads data from that special "metrics/monitoring"
topic, but this data is read from every Kafka cluster at
LinkedIn.

n What they producers said they wrote in.
n What the audit consumers said they saw.

n Shows correlation graphs (producers vs. audit
consumers)

n For each tier, it shows how many messages there were in each
topic over any given period of time.

n Percentage of how much data got through (from cluster to
cluster).

n If the percentage drops below 100%, then emails are sent to
Kafka SRE+DEV as well as their Hadoop ETL team because that
stops the Hadoop pipelines from functioning properly.

Storm&Kafka 218

LinkedIn's Audit UI: a closing look
n Example 1: Count

discrepancy
n Caused by messages

failing to reach a
downstream Kafka cluster

n Example 2: Load lag

Storm&Kafka 219

Kafka Performance Tuning
n OS Kernel tuning

n Don’t swap! vm.swappiness = 0 (RHEL 6.5 onwards:
1)

n Allow more dirty pages but less dirty cache.
n LinkedIn have lots of RAM in servers, most of it is for page cache

(60 of 64 GB). They let dirty pages built up, but cache should be
available as Kafka does lots of disk and network I/O.

n See vm.dirty_*_ratio & friends

n Disk throughput
n Longer commit interval on mount points. (ext3 or ext4)

n Normal interval for ext3 mount point is 30s between flushes;
LinkedIn: 120s. They can tolerate losing 2mins worth of data
(because of partition replicas) so they rather prefer higher
throughput here.

n More spindles (RAID10 w/ 14 disks)

Storm&Kafka 220

Java/ JVM tuning for Kafka
n Biggest issue: Garbage Collection (GC)

n And, most of the time, the only issue

n Goal is to minimize GC pause times
n Aka “stop-the-world” events – apps are halted until GC

finishes

Storm&Kafka 221

Java garbage collection in Kafka @
Spotify

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf

Before tuning After tuning

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf

Storm&Kafka 222

Kafka configuration tuning
n Often not much to do beyond using the defaults,
n Key candidates for tuning:

num.io.threads should be >= #disks (start testing with == #disks)

num.network.threads adjust it based on (concurrent) #producers,
#consumers, and replication factor

Storm&Kafka 223

Kafka usage tuning – lessons learned
from others

n Don't break things up into separate topics unless the data in
them is truly independent.
n Consumer behavior can (and will) be extremely variable, don’t

assume you will always be consuming as fast as you are producing.

n Keep time related messages in the same partition.
n Consumer behavior can extremely variable, don't assume the lag on

all your partitions will be similar.
n Design a partitioning scheme, so that the owner of one partition can

stop consuming for a long period of time and your application will be
minimally impacted (for example, partition by transaction id)

http://grokbase.com/t/kafka/users/145qtx4z1c/topic-partitioning-strategy-for-large-data

http://grokbase.com/t/kafka/users/145qtx4z1c/topic-partitioning-strategy-for-large-data

Storm&Kafka 224

Further Reading
n Neha Narkhede, Gwen Shapira, Todd Palino,

“Kafka – The Definitive Guide,” published by
O’Reilly, July 2017.
n Complimentary Free Copy available from the Confluent

website
https://www.confluent.io/wp-content/uploads/confluent-kafka-definitive-guide-
complete.pdf

